
Fall term 2010

KAIST EE209 Programming Structures for EE

Final exam

Thursday Dec 16, 2010

Student's name:

Student ID:

The exam is closed book and notes. Read the questions carefully and focus your answers on

what has been asked. You are allowed to ask the instructor/TAs for help only in understanding

the questions, in case you find them not completely clear. Be concise and precise in your

answers and state clearly any assumption you may have made. All your answers must be

included in the attached sheets. You have 90 minutes to complete your exam. Be wise in

managing your time.

Please do not fill in the "Score" fields below. Self-grading is not allowed. Good luck!

Scores

Question 1 __________/12___

Question 2 __________/13___

Question 3 __________/10___

Question 4 __________/10___

Question 5 __________/10___

Question 6 __________/10___

Question 7 __________/25___

Total __________/90___

1. Dancing with pointers (12 pt)

(a) – (c)

int a[] = {1,2,3,4,5,6,7,8,9};

int *p = &a[1], *q = &a[5];

(a) What is the value of *(p+2)? (2pt)

4

(b) What is the value of *(q-3)? (2pt)

3

(c) What is the value of q –p ? (2pt)

4

(d) Define a function pointer type (use typedef) named “handler” which takes one

integer pointer as an argument and returns a void pointer. (2pt)

typedef void * (*handler) (int *);

(e) What does this program print out? (4pt)

char a[] = “abcdefg”;

int *p = (int *)a;

p++;

((char *)p)[2] = „X‟;

printf(“p = %s\n”, (char *)a);

p = efX

2. Simple C programming (15 pt)

<qsort() programming> Qsort() is a C runtime library function that sorts an arbitrary array

of any type using the quick sort algorithm. Here is the manual page for qsort().

NAME

 qsort - sorts an array

SYNOPSIS

 #include <stdlib.h>

 void qsort(void *base, size_t nmemb, size_t size,

 int(*compar)(const void *, const void *));

DESCRIPTION

The qsort() function sorts an array with nmemb elements of size size. The base argument

points to the start of the array. The contents of the array are sorted in ascending order

according to a comparison function pointed to by compar, which is called with two arguments

that point to the objects being compared.

The comparison function must return an integer less than, equal to, or greater than zero if the

first argument is considered to be respectively less than, equal to, or greater than the second.

If two members compare as equal, their order in the sorted array is undefined.

RETURN VALUE

The qsort() function returns no value.

(a) We have code that sorts and prints out the argument strings to the standard output as

follows. Please fill out cmpstringp() below (8 pt).

#include <stdio.h>

 #include <stdlib.h>

 #include <string.h>

 static int

 cmpstringp(const void *p1, const void *p2)

 {

/* fill in the code below, you can use any C runtime library functions */

 return strcmp((const char *)p1, (const char *)p2);

(or any code that does the same thing as strcmp)

 }

 int

 main(int argc, char *argv[])

 {

 int j;

 if (argc < 2) {

 fprintf(stderr, "Usage: %s <string>...\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 qsort(&argv[1], argc - 1, sizeof(argv[1]), cmpstringp);

 for (j = 1; j < argc; j++)

 puts(argv[j]);

 exit(EXIT_SUCCESS);

 }

(b) This function checks whether the machine is a big-endian machine or not. If it is a big

endian machine, it returns 1, otherwise it returns 0. Please fill out the function. (5pt)

int IsBigEndian(void)

{

/* fill in the code here */

/* something similar to the following code */

int x = 0x01020304;

char *p = (char *)&x;

return (p[0] == 0x01);

}

3. The following assembly code was generated by gcc209 by compiling a simple C function

(named g). It takes a single unsigned integer parameter and returns an unsigned integer

value. You may assume the parameter passed in is in the range of 0 to 10. (10pt)

.file "wow.c"

 .text

.globl g

 .type g, @function

g:

 pushl %ebp

 movl %esp, %ebp

 subl $8, %esp

 cmpl $1, 8(%ebp)

 ja .L2

 movl $1, %eax

 jmp .L3

.L2:

 movl 8(%ebp), %eax

 decl %eax

 subl $12, %esp

 pushl %eax

 call g

 addl $16, %esp

 imull 8(%ebp), %eax

.L3:

 leave

 ret

Some hints to understand this code:

 “leave” releases the stack frame, copying EBP into ESP

 imull multiplies two operands and stores the result to the second operand.

 decl decrements the operand by 1

(a) What is stored in 8(%ebp)? (2pt)

The passed parameter.

(b) How many local variables does this function, g, have? (2pt)

Zero. (0).

(c) What is the value of g(3)? (2 pt)

g(3) returns 6.

(d) Describe the summary of what this function does in one or two sentences. (4pt)

Given n as a parameter, g calculates and returns n!(factorial(n)).

4. Memory management (10pt)

a) Consider a computer system that has virtual memory with 32-bit addresses and a 8KB

page size. How many bits are used to identify the byte offset in a page? How any

virtual pages a process have? (2pt)

13 bits for a byte offset in a page. (1pt)

2
32-13

 = 2
19

virtual pages per process is possible. (1pt)

b) Briefly explain temporal locality and spatial locality. (2pt)

Temporal locality means that the recently accessed memory location is likely to be

accessed again in the near future (1pt) while spatial locality means that the memory

location nearby the recently accessed memory is likely to be used in the near future.

(1pt)

c) Why does implementing malloc() and free() with a single free list (with free blocks of

different sizes) lead to a lot of virtual-memory page faults? (2pt)

Free list traversal looking for a good chunk will visit many memory addresses in the

different virtual pages, forcing swapped-out pages to be brought back to physical

memory.

d) A call to fork() creates a child process that inherits a copy of the parent‟s virtual

address space. The virtual address space is quite large, so copying every byte would

be quite time consuming. How is this overhead avoided (be specific)? (4pt)

By copying only the page table entries of the parent process (not the bytes in each

page) (2pt) and sharing the physical memory pages until there is any update on any of

the page (1pt). If there is an update on a specific page, that page will be copied and

allocated separately for each process – copy-on-write (COW) mechanism.(1pt)

5. Exceptions and Process control (10pt)

(a) What is exception in process execution (not java exception)? (2pt)

Deviation of execution from the normal control flow in a process.

(b) Describe four types of exceptions, and give at least one example to each type. (4pt)

 Interrupts – keyboard/mouse click, hard disk I/O done, network packet arrival at

network cards, etc. (1pt)

 Traps – invoking system calls (1pt)

 Faults – page faults. memory access violation (segmentation faults). divide-by-

zero fault, etc.(1pt)

 Aborts – physical memory checksum error (1pt)

(c) What is context switch? List at least three different causes for context switch. (4pt)

Context switch refers to the activity that the OS assigns the CPU to a different process.

(1pt)

Causes (for any reasonable cause 1pt)

1. Timer interrupt (time quantum)

2. I/O requests or faults (e.g., disk I/O that takes up long time, page fault handling)

3. Explicitly calls sleep() (or similar functions or locks) in the process

6. Programming with fork(). (10 pt)

int main()

{

 int i;

 int x = 3;

 for (i = 0; i < 2; i++) {

if (fork() == 0) {

 printf(“x = %d\n”, --x);

} else {

 printf(“x = %d\n”, ++x);

}

}

printf(“hello\n”);

return 0;

}

a) How many times “hello\n” is printed out? (3pt)

4

b) List all values of x that are printed. (5pt)

1, 2, 3, 3, 4, 5 (-1 : any wrong or missing number)

c) If (i < 2) in the for loop is replaced with (i < n), how many times “hello\n” would be

printed out (in terms of n)? (2pt)

2
n

7. Code reading (25pt)

a) The following function checks something with x. What does it do? Describe what it

does not how it does. (3pt)

int foo(unsigned int x)

{

return (x & (x-1) == 0);

}

foo checks whether x is power of 2 or not.

b) Signal handling (7 pt)

#include <signal.h>

#include <stdio.h>

void sighandler(int x)

{

 raise(SIGINT);

 printf("sighandler called\n");

}

int main()

{

 signal(SIGINT, sighandler);

 getchar();

return 0;

}

The behavior of the above program is different depending on the keyboard input.

Describe what happens on a different key input. Be specific. (5pt)

Ctrl-C => infinite printing of “sighandler called\n” (4pt)

Other keys (+ enter) => finishes execution without any printouts (1pt)

Give a sequence of shell commands to stop this process when it prints out “signal

called\n”. Assume the process is running in the foreground. (2pt)

Ctrl-Z => figure out pid of this process by ps command => kill -9 pid

c) char *x = “abcde”;

char *p = x;

p[sizeof(x)] = „Y‟;

printf(“p=%s\n”, x);

What happens when you run the above code? Specify the reason of your answer. (3pt)

It is likely to crash with memory access violation (2pt) since the code tries to write to

the read-only section (string literal) (1pt).

d) int foo(const char* st, const char* pat)

{

 int i, j;

 int n = 0;

for (i = 0; i < strlen(st); i++)

for (j = 0; j < strlen(pat); j++)

if (st[i] == pat[j])

n++;

 return n;

}

What does this function do? (Assume characters in pat are unique in the string)(3pt)

Returns the number of characters in the “st” string that appear in the “pat” string.

Fix three lines that need improvement for better performance. (3pt)

strlen(st) is executed each time in the for loop.

 int len_st = strlen(st);

for (i = 0; i < len_st; i++)

strlen(pat) is executed each time in the for loop.

 int len_pat = strlen(st);

for (j = 0; j < len_pat; j++)

After n++, it‟s better to break out of the nested for loop.

 If (st[i] == pat[j]) { n++; break;}

Assuming st is typically really large (e.g., 10 Gigabytes), rewrite the code for better

performance. You should slightly change the function prototype to be correct. (6pt)

One possible solution is below:

1. Instead of iterating strlen(pat) times for each character of st, create a bit map that

remembers which character in pat is set.

2. Using each character in st as an index to the map, see if the corresponding map

element is set (meaning that the character is in the pat string)

3. Avoid using strlen(st) since it has to scan a few Gigabytes to find the „\0‟ character.

Instead, use a pointer(p) and see if *p is „\0‟ to check the end of the string.

2 pt: avoid strlen(st)

3 pt: avoid scanning pat for each character of the st string.

1 pt: use 64 bit integer (long is fine on an 64-bit OS)

long long int foo(const char* st, const char* pat)

{

 int i;

 char map[256] = {0}:

 int len_pat = strlen(pat);

 const char *p;

 long long int n = 0; /* 64 bit integer */

for (i = 0; i < len_pat; i++)

 map[pat[i]] = 1;

for (p = st; *p != \‟0‟; p++)

 if (map[*p])

 n++;

 return (n);

}

