
1

Fall term 2011

KAIST EE209 Programming Structures for EE

Final exam

Thursday Dec 15, 2011

Student's name:

Student ID:

The exam is closed book and notes. Read the questions carefully and focus your answers on

what has been asked. You are allowed to ask the instructor/TAs for help only in understanding

the questions, in case you find them not completely clear. Be concise and precise in your

answers and state clearly any assumption you may have made. All your answers must be

included in the attached sheets. You have 120 minutes to complete your exam. Be wise in

managing your time.

Scores

Question 1 __________/10___

Question 2 __________/20___

Question 3 __________/15___

Question 4 __________/10___

Question 5 __________/10___

Question 6 __________/15___

Total __________/80___

2

1. Briefly explain following terms (10 pt)

(a) Page fault (2pt)

(b) Spatial locality (2pt)

(c) Stack frame (2pt)

(d) System call (2pt)

(e) Singal (2 pt)

3

2. Programming with fork() (20 pt)

a) What does this program print out? Write every possible output. (5pt)

static void f(void) {

putchar('A');

fflush(NULL);

if (fork() == 0) {

putchar('B');

exit(0);

}

putchar('C');

wait(NULL);

putchar('D');

}

int main(void) {

putchar('E');

f();

putchar('F');

return 0;

}

b) What does this program print out? (5pt)

int main(void)

{

 int i;

putchar('A');

fflush(NULL);

for (i = 0; i < 3; i++)

fork();

putchar('B');

return 0;

}

4

c) What’s the maximum number of characters that can be printed out to stdout in the

following program? Please note that we got rid of fflush(NULL); from the program

above (b). (5pt)

int main(void)

{

 int i;

putchar('A');

for (i = 0; i < 3; i++)

fork();

putchar('B');

return 0;

}

d) What’s the output of the second printf() (printf(“parent ..”))? (3pt). How many times

is the second printf(() called? (2pt)

int main(void)

{

 int k = 1;

if (fork() == 0) {

 k++;

 printf(“child k=%d\n”, k);

 exit(0);

}

k += 2;

wait(NULL);

printf(“parent k=%d\n”, k);

return 0;

}

5

3. The following assembly code was generated by gcc209 by compiling a simple C function

(named f). It takes two integer parameters and returns an unsigned integer value. You may

assume the passed-in parameters are in the range of 1 to 10. (15pt)

.file "f.c"

.text

.globl f

.type f, @function

f:

 pushl %ebp

 movl %esp, %ebp

 subl $24, %esp

 cmpl $1, 12(%ebp)

 jne .L2

 movl 8(%ebp), %eax

 jmp .L3

.L2:

 movl 12(%ebp), %eax

 movl %eax, %edx

 shrl %edx

 movl 8(%ebp), %eax

 imull 8(%ebp), %eax

 subl $8, %esp

 pushl %edx

 pushl %eax

 call f

 addl $16, %esp

 movl %eax, -12(%ebp)

 movl 12(%ebp), %eax

 andl $1, %eax

 cmpl $0, %eax

 jne .L4

 movl -12(%ebp), %eax

 jmp .L3

.L4:

 movl 8(%ebp), %eax

 imull -12(%ebp), %eax

.L3:

 leave

 ret

Some hints to understand this code:

 “leave” releases the stack frame, copying EBP to ESP

 imull multiplies two operands and stores the result to the second operand.

6

(a) Where are the two passed-in parameters in terms of %ebp? (4pt)

(b) What’s the value of f(3, 3)? (4pt)

(c) Write the equivalent code in C. (5pt)

(d) Describe what the function does in one sentence. (2pt)

7

4. Memory management (10 pt)

a) Given a virtual address, 0x34233230 on a lab machine, what is the virtual page

number? What is the page offset? (4pt)

b) Why could be the “best fit” memory allocation strategy a good method? (2pt)

c) Why could be the “best fit” memory allocation strategy a bad method? (2pt)

d) What does execvp() do? (1pt) Does it create a new process? (1pt)

8

5. Exceptions and Process control (10pt)

(a) Describe four types of exceptions, and give at least one example to each type. (4pt)

(b) What is context switch? List at least three different causes for context switch. (4pt)

c) I’d like to kill a process whose pid is 1234. What’s the Linux command to kill the

process? (Assume you have the privilege to kill the process) (2pt)

9

6. Big integer operations (15pt)

We are writing a library that can add and multiply two unsigned large integer values that

cannot be represented by the C’s built-in integer type (unsigned int, unsigned long,

unsigned long long). Assume that the largest integer in the library can be represented by

32 * sizeof(unsigned int) bytes. u_int is typedef’ed to be unsigned int.

For example, 0x11111111222222223333333344444444 can be represented by an integer

array of size 4. That is

u_int a[16] = {0};

a[0] = 0x44444444

a[1] = 0x33333333

a[2] = 0x22222222

a[3] = 0x11111111

represents 0x11111111222222223333333344444444. a[3] represents the most significant

four bytes whereas a[0] represents the least significant four bytes.

a) add_large() takes two unsigned big integers (a[16], b[16]) and write the sum to c[17].

Please fill out the function. (5pt)

void add_large(u_int a[16], u_int b[16], u_int c[17])

{

}

10

b) multiply_large() takes two unsigned big integers (a[16], b[16]) and writes the result of

the multiplication of the values into c[32]. Please fill out the function. (10pt)

void multiply_large(u_int a[16], u_int b[16], u_int c[32])

{

}

