
Spring Semester 2017

KAIST EE209

Programming Structures for Electrical Engineering

Final Exam

Name:

Student ID:

This exam is open book and notes. Read the questions carefully and focus your answers on

what has been asked. You are allowed to ask the instructor/TAs for help only in understanding

the questions, in case you find them not completely clear. Be concise and precise in your

answers and state clearly any assumption you may have made. You have 165 minutes (1:00

PM – 3:45 PM) to complete your exam. Be wise in managing your time. Good luck.

Question 1 / 25

Question 2 / 20

Question 3 / 15

Extra credit / 10

Question 4 / 20

Question 5 / 20

Total / 110

Name: Student ID:

1

Read before you start: The code snippets in the exam omit error handling due to
space constraint. In the real-world code, you should handle all errors properly.
Please assume all system call functions succeed for the purpose of the exam
problems.

1. (25 points) Multiple processes

(a) Give all possible output sequences of the code above. (5 points)

(b) In the code above, how many lines of output will you see when funfork() is

called? Give the number in terms of n (n >=1). (5 points)

void funfork(int n) {

 int i;

 for (i = 0; i < n; i++)

 fork();

 printf(“hi\n”);

 exit(0);

}

int main()

{

 int x = 3;

if (fork() != 0)

printf(“x=%d\n”, ++x);

 printf(“x=%d\n”, --x);

 return 0;

}

Name: Student ID:

2

(c) What are the possible output sequences of the code above? Write all possible

output sequences. (5 points)

int main() {

 if (fork() == 0) {

printf(“a”); fflush(stdout);

} else {

printf(“b”); fflush(stdout);

waitpid(-1, NULL, 0);

}

 printf(“c”); fflush(stdout);

 exit(0);

}

Name: Student ID:

3

(d) Which of the following is possible for the output of the code above? Note that

atexit() takes a pointer to a function, and adds it to a list of functions (initially
empty) that will be called (in the reverse order of registration) when the exit()
function is called. (5 points)

A. 112002
B. 211020
C. 102120
D. 122001
E. 100212

void end(void)

{ printf(“2”); fflush(stdout); }

int main()

{

 if (fork() == 0) atexit(end);

 if (fork() == 0) {

printf(“0”); fflush(stdout);

} else {

printf(“1”); fflush(stdout);

}

 exit(0);

}

Name: Student ID:

4

(e) Briefly describe what a zombie process is (2points). What should a
programmer need to do to remove zombie processes? (3 points) (2+3=5
points)

Name: Student ID:

5

2. (20 points) Signal Programming

(a) Signal programming is so fun, so I wrote the following code to test the
catching SIGINT signal. I compiled and ran the code, and confirmed that it
runs well by showing “caught SIGINT!” whenever I typed in Ctrl+C. But now, I
realize that I cannot kill the process with Ctrl+C any more since it has set up a
signal handler for it. Describe how to kill the process without resorting to a
nonsensical way such as turning off the machine. Describe the steps in detail.
(5 points)

static void SigIntHandler(int sig)

{

printf(“caught SIGINT! \n”);

}

int main()

{

 void (*pf)(int);

 pf = signal(SIGINT, SigIntHandler);

 assert(pf != SIG_ERR);

 while (1) {

 sleep(1);

 printf(“catching a signal is fun!\n”);

}

exit(0);

}

Name: Student ID:

6

(b) Now that I figured out how to kill the process whenever I want, I went on to

write another toy program that increments a counter by one for each one
second while it decrements the counter by one whenever I type in Ctrl+C.
When I ran the code, and it looked working fine for almost all time, but in a
very rare case, it shows an incorrect counter value at the end. Explain the
bug in the code above. (5 points)

int counter = 0;

static void SigIntHandler(int sig)

{

counter--;

}

int main()

{

 void (*pf)(int);

 int i;

pf = signal(SIGINT, SigIntHandler);

 assert(pf != SIG_ERR);

 for (i = 0; i < 100; i++)

 sleep(1);

 counter++;

}

printf(“count = %d\n”, counter);

exit(0);

}

Name: Student ID:

7

(c) Rewrite the portion of the code to fix the bug in (b). (10 points)

Name: Student ID:

8

3. (15 points, and 10 points for extra credit = total 25 points)
Counting the number of different binary trees.

A binary tree (in data structure) consists of nodes where each node can have up
to two pointers (e.g., left and right pointers) to other nodes (called children
nodes, and the node that points to a child node is called a parent node of the
child node) and there is no cycle among the nodes if one follows the pointers. All
nodes should be reachable by following the pointers from a root node. A root
node is a node that does not have a parent node. The followings are examples
of different binary trees. A circle is a node and an arrow represents a pointer. A
pointer can be either left or right pointer.

Let’s say Cn represents the number of different binary trees with n nodes. For
example, C1 = 1 and C2 = 2. Assume C0 = 1. C3 = 5, as shown below.

(a) Describe Cn in relation with Ck where 0 <= k < n (5 points)

Name: Student ID:

9

(b) Write the function that calculates Cn where 0<= n <= 35. For these n, long

(signed 64-bit integer) is enough to represent Cn (no overflow). (10 points for (b-
1), and 10 points for (b-2) as extra credit)

(b-1) Write a recursive version. Hint: it would require less than 10 lines of code
(10 points)

long Cn(int n)

{

}

Name: Student ID:

10

(b-2) (extra credit) A naïve recursive function could be very slow for large n. One
way to optimize is to have the function remember the intermediate Ck values (k
< n) while calculating Cn (e.g., in a static array in the function) and use the
stored values for any future queries. This strategy is called dynamic
programming in general. Write a version that exploits dynamic programming –
again, you can assume n is between 0 and 35. Hint: actually, only a few lines of
code need to be added to the naïve recursive version. (10 points)

long Cn(int n)

{

}

Name: Student ID:

11

4. (20 points) Page tables and pointers

(a) (5 points) On 32-bit OS with 4KB page size, how many page table entries

does one process have at maximum (3 points)? How much memory is
required for the page table of a process if one entry takes up 4 bytes? (2
points)

(b) (5 points) On 64-bit OS/CPU, the number of page table entries could be
huge and naïve memory allocation for a page table even for one process
could be larger than the entire physical memory on a machine. How can you
reduce the memory consumption for a page table for 64-bit virtual addresses?
(Actually, you can assume that only 48 bits are used instead of the entire 64-
bit address, like in Intel CPU)

Name: Student ID:

12

(c) The following code scans an array of integers (n elements) and return a
pointer to the first occurrence of val. What’s wrong with the code? Fix the
problem. (Numbers in the left are line numbers, and they are invisible to
compilers) (5 points)

1 int *search(int *p, int n, int val)

2 {

3 int c = 0;

4 while (p && c < n && *p != val) {

5 p += sizeof(int); c++;

6 }

5 return (c < n) ? p : NULL;

6 }

Name: Student ID:

13

(d) The following code creates n x m integer array, and return the pointer.
Actually, it works well on 32-bit OS while it misbehaves on 64-bit OS. What’s
wrong with the code? Fix the problem. (Numbers in the left are line numbers,
and they are invisible to compilers) (5 points)

1 int **makearray(int n, int m)

2 {

3 int i;

4 int **A = (int **) malloc(n * sizeof(int));

5 for (i = 0; i < n; i++)

6 A[i] = (int *)malloc(m * sizeof(int));

7 return A;

8 }

Name: Student ID:

14

5. (20 points) IA-32 Assembly language programming

Consider the following assembly code that is compiled from the C code below

C code:

… # don’t worry about prolog, etc.

int loop(int x, int n): x is in %edi, n is in %esi

loop:

 movl %esi, %ecx

 movl $1, $edx

 movl $0, $eax

 jmp .L2

.L3:

 movl %edi, %ebx

 andl %edx, $ebx

 orl %ebx, $eax

 sall %cl, $edx

.L2:

 compl $0, $edx

 jne .L3

… # don’t worry about epilog, etc.

 ret

int loop(int x, int n)

{

 int result = _______A________;

 int mask;

 for (mask = ____B____; mask ____C_____; mask = ___D____)

 result |= ______E_______;

 return result;

}

Name: Student ID:

15

(a) Which registers hold program values x, n, result, and mask? (5 points)

(b) Fill out underlined A and B in the C code above. (5 points)

(c) Fill out underlined C and D in the C code above. (5 points)

(d) Fill out underlined E and F in the C code above. (5 points)

