

Fall Semester 2016

KAIST EE209

Programming Structures for Electrical Engineering

Mid-term Exam

Name:

Student ID:

This exam is open book and notes. You should not _share_ any books/notes with your

students during the test. Read the questions carefully and focus your answers on what has

been asked. You are allowed to ask the instructor/TAs for help only in understanding the

questions, in case you find them not completely clear. Be concise and precise in your answers

and state clearly any assumption you may have made. You have 165 minutes (9:00 AM –

11:45 AM) to complete your exam. Be wise in managing your time. Good luck.

Question 1 / 10

Question 2 / 20

Question 3 / 20

Question 4 / 25

Question 5 / 25

Question 6 /15 (extra credit)

Total / 115

Name: Student ID:

1

1. (10 points) Small Programs

 Assume that we have included proper header files (e.g., <stdio.h>).

 Assume that we are using 64-bit OS.

(a) (2 points) What’s the output of this code snippet?

char *p, *q = p;

char x = ‘A’;

p = &x;

printf(“*q = %c\n”, *q);

 The output could be a random value. The program could crash since dereferencing

q may cause access violation.

(b) (2 points) What’s wrong with the code below? Briefly explain the reason why it is

wrong.

char c;

while ((c = getchar()) != EOF)

 putchar(c);

 c should be declared as int since it needs to represent EOF in addition to all the

characters in the ASCII code table.

Name: Student ID:

2

(c) (3 points) What’s the output of this code snippet?

(%zu takes an unsigned long integer)

float f[] = {2016.3, 98.4};

float *pf = f;

printf(“1:%zu 2:%zu 3:%zu\n”, sizeof(f), sizeof(pf), sizeof(*pf));

 1:8 2:8 3:4

(d) (3 points) What’s the output of this code snippet?

int f(int x)

{

 assert(x >= 0);

if (x == 0 || x == 1) return x;

return f(x-1) + f(x-2);

}

…

printf(“%d\n”, f(5));

 5 (f(0) = 0, f(1) = 1, f(2) = 1, f(3) = 2, f(4) = 3, f(5) = 5)

Name: Student ID:

3

2. (20 points) Mergesort

We implement mergesort in this problem. Mergesort is a fast sorting algorithm similar to

quicksort. It works by dividing a list of elements into two halves, recursively sorting each

half, and merging the sorted two halves into one sorted list. At a given stage with a list of

n elements, it divides the list into two lists, say A and B, such that the number of elements

in each list is equal or differs by only one element, and recursively sorts A and B, and

merge A and B into one sorted list. Here is the skeleton code of mergesort that you need

to complete.

void MergeSortedList(int a[], int start, int mid, int end)

{

 // (1) You need to fill out this function

}

void MergeSort(int x[], int start, int end)

{

 int mid;

 // (2) Handle the base condition here

mid = (start + end) / 2;

 MergeSort(x, start, mid); // sort the elements from x[start] to x[mid]

 MergeSort(x, mid + 1, end); // sort the elements from x[mid+1] to x[end]

 MergeSortedList(x, start, mid, end); // merge two sorted lists into one sorted list

}

(a) (5 points) Write the code for (2). (2) checks if it’s the base case, and handles the

base case if so. (Hint: it requires only one or two lines depending on your coding

style.)

 if (start >= end) return;

Name: Student ID:

4

(b) (15 points) Write the code for (1). (1) merges two sorted lists (a[start] … a[mid],

and a[mid+1] … a[end]) into one sorted list. It works is as follows.

Let’s say A and B are the two sorted lists (A: a[start...mid], B: a[mid+1…end])

Say C is a temporary array that can hold all elements in A and B (e.g., C’s size is

end – start + 1)

Do the following until C is full

- Retrieve the current smallest number from list A and B.

- Store the smaller number of the two to C

- Remove the stored number from the list where it was drawn from.

Copy C back to A and B.

void MergeSortedList(int a[], int start, int mid, int end)

{

int n = end – start + 1;

int c[n];

int i = 0; // c’s current index

int i1 = start, i2 = mid + 1; // starting index for A and B

while (i < n) {

int x = a[i1]; // retrieve the current smallest number in A

 int y = a[i2]; // retrieve the current smallest number in B

 if (x < y) {

 c[i++] = x;

if (i1 == mid) { // is A depleted? (blank X)

 memcpy(c + i, a + i2, (end – i2 + 1) * sizeof(int));

// or

// while (i2 <= end) c[i++] = a[i2++];

 break; // or i = n;

}

i1++;

} else {

Name: Student ID:

5

c[i++] = y;

 // (blank Y)

if (i2 == end) {

 memcpy(c + i, a + i1, (mid – i1 + 1) * sizeof(int));

// or

// while (i1 <= mid) c[i++] = a[i1++];

 break; // or i = n;

}

i2++;

}

} // end of while

 // copy C back to A and B (blank Z)

 memcpy(a + start, c, n * sizeof(int));

// or

// for (i = 0; i < n; i++) a[start + i] = c[i];

}

Please fill out the blanks X, Y, and Z above.

Name: Student ID:

6

3. (20 points) Programming a word dictionary

Here is the source code listing.

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#define TRUE 1

#define FALSE 0

#define DICTSIZE 1024

struct Node {

 char *key; char *canonical; struct Node* next;

};

struct Dict {

 struct Node *b[DICTSIZE];

};

int HashString(const char *k, int size)

{

 unsigned int t = 0U;

 while (*k != 0) t = t * 65599 + *k++;

 return (t % size);

}

int CompareChar(const void *a, const void *b)

{

 char p = *(char *)a; char q = *(char *)b;

 return (p - q);

}

struct Dict *DictCreate(void)

{

 return calloc(1, sizeof(struct Dict));

}

Name: Student ID:

7

int DictInsert(struct Dict *t, char *key)

{

 struct Node *p = malloc(sizeof(struct Node));

 int h;

 if (p == NULL) return FALSE;

 if ((p->key = strdup(key)) == NULL) return FALSE;

 if ((p->canonical = strdup(key)) == NULL) {

free(p->key);

return FALSE;

 }

 p->next = NULL;

 qsort(p->canonical, strlen(key), 1, CompareChar);

 h = HashString(p->canonical, DICTSIZE);

 p->next = t->b[h];

 t->b[h] = p;

 return TRUE;

}

int DictPrint(struct Dict *t, char *key)

{

 char *canonical;

 struct Node *p;

 int found = FALSE;

 int h;

 canonical = strdup(key);

 if (canonical == NULL)

 return FALSE;

 qsort(canonical, strlen(key), 1, CompareChar);

Name: Student ID:

8

 h = HashString(canonical, DICTSIZE);

 p = t->b[h];

 for (p = t->b[h]; p != NULL; p = p->next) {

 if (strcmp(p->canonical, canonical) == 0) {

 printf("%s\n", p->key);

 found = TRUE;

 }

 }

 free(canonical);

 return found;

}

int main()

{

 struct Dict *t = DictCreate();

 if (t == NULL) {

 fprintf(stderr, "DictCreate() failed\n");

 return -1;

 }

 DictInsert(t, "pots");

 DictInsert(t, "hello");

 DictInsert(t, "post");

 DictInsert(t, "stop");

 DictInsert(t, "tops");

 DictPrint(t, "psot");

 return 0;

}

Name: Student ID:

9

(a) (5 points) What’s the output of the program? Assume all C runtime library

function calls succeed.

tops

stop

post

pots

(b) (5 points) Explain what DictPrint(struct Dict *t, const char *key) does in plain

English. What’s the algorithm.used here?

 It prints out all anagrams of the string, key in t. String A and B are called

anagrams if the two sets of the characters used in A and B are identical. The

algorithm here is to keep a canonical string of a given string, which is an anagram

to the string so that the characters in the canonical string are sorted in their

alphabetical order (in the order of the ASCII code table). If the canonical string of

an item is the same as the input key, its original string (p->key) is printed out.

Name: Student ID:

10

(c) (10 points) Write DictFree(struct Dict *t); Note that it should not have any

memory leak.

void DictFree(struct Dict* t)

{

struct Node*p, *next;

int i;

for (i = 0; i < DICTSIZE; i++) {

 for (p = t->b[i]; p != NULL; p = next) {

 next = p->next;

 free(p->key); free(p->canonical); free(p);

}

}

free(t);

}

Name: Student ID:

11

4. (25 points) Key-value storage with a hash table

We learned a hash table-based key-value storage in class. Please assume the same data

structures (struct Table, struct Node) and functions (Table_create(), Table_search()) as in

class. For your reference, Table_add() is shown as below (identical in the lecture slides)

int Table_add(struct Table *t, const char *key, int value)

{

 struct Node *p = (struct Node*)malloc(sizeof(struct Node));

 int h = hash(key);

 if (p == NULL) return FALSE;

 p->key = key;

 p->value = value;

 p->next = t->array[h];

 t->array[h] = p;

 return TRUE;

}

In a separate C file, we write the following code:

char p1[100] = “EE209”;

char p2[100] = “EE205”;

struct Table *t;

int found, value;

t = Table_create(); // assume that t is assigned a non-null pointer

Table_add(t, p1, 3); // assume that Table_add() succeeds

Table_add(t, p2, 10); // assume that Table_add() succeeds

strcpy(p1, p2);

found = Table_search(t, “EE209”, &value); // (1)

found = Table_search(t, “EE205”, &value); // (2)

Name: Student ID:

12

(a) (5 points) Will Table_search() in (1) succeed? If it succeeds, what do you see in the

variable, “value”? Briefly justify your answer.

 No. The table has a key that points to p1, but its content is changed to “EE205”.

So, Table_search() won’t find an entry with the key, “EE209”.

(b) (5 points) Will Table_search() in (2) succeed? If it succeeds, what do you see in the

variable, “value”? Briefly justify your answer.

 Yes, and the value will be 10. The table keeps two entries whose key is “EE205”.

However, the right value will be returned since the correct entry is stored later

than (p1, 3). That is, even if “EE209” and “EE205” are hashed into the same bin,

since (p2, 10) is inserted later than (p1, 3), it will be accessed earlier than (p1, 3).

So 10 will be returned as value.

(c) (5 points) Describe the problem in the code above.

 The source of the problem is the fact that the table keeps a pointer to the key

string. If the key string is updated outside the table, the key in a table entry is

changed as well, pointing to a wrong key string.

Name: Student ID:

13

(d) (10 points) Rewrite Table_add() to fix the problem. For safety, what code you need to

add to Table_free()? Briefly explain it in English.

int Table_add(struct Table *t, const char *key, int value)

{

struct Node *p = (struct Node*)malloc(sizeof(struct Node));

 int h = hash(key);

 if (p == NULL) return FALSE;

 p->key = strdup(key);

 if (p->key == NULL) return FALSE;

 p->value = value;

 p->next = t->array[h];

 t->array[h] = p;

 return TRUE;

}

 The only two lines that need to be changed are boldfaced above. In Table_free()

we need to make sure that p->key is freed before p.

Name: Student ID:

14

5. (25 points) Printing all combinations of a string

We are writing a function that prints out every possible combinations of the characters in

a string (for a string with length n, there is n! possible combinations). For example, if the

input string is “abc”, your function should print out

abc

acb

bac

bca

cab

cba

The number of output lines should be n! for a string with length n. This means that you do

not need to make each output line unique. For example, for “aaa”, you will see six (=3!)

lines of “aaa” in the output.

(a) (10 points) Please describe the algorithm in plain English. Please be specific in each

step. (Hint: use a recursive function)

 There are many variants, but here is one solution. For an n-character string, p,

do the following:

if n is 1, print the string and finish.

if n is larger than 1,

 Call PrintCombination with p, len = n, k = 0 as arguments.

 PrintCombination prints our all combinations while fixing the first k

characters of p. Given (p, len, k), PrintCombination iterates through all

characters that can be the (k+1)-th character, and for each case, it calls itself

with (p, len, k+1) to print out all combinations while fixing the first k+1

characters. When k is len -2, it means the function can change only the last

two characters in the string. So, it prints out the two possible combinations

and return (no more recursive call).

Name: Student ID:

15

(b) (15 points) Fill out the function below. You may define and use other functions if

needed. Also, you can use any C runtime library functions (no #include is needed).

void Swap(char *a, char *b)

{

 char t = *a;

 *a = *b;

 *b = t;

}

void PrintCombination(char *s, int n, int k)

{

 int i;

 assert(k <= (n-2));

 if (k == (n - 2)) {

 printf("%s\n", s);

 Swap(s + k, s + k + 1);

 printf("%s\n", s);

 Swap(s + k, s + k + 1);

 return;

 }

 PrintCombination(s, n, k+1);

 for (i = k + 1; i < n; i++) {

 Swap(s + k, s + i);

 PrintCombination(s, n, k + 1);

 Swap(s + k, s + i);

 }

}

Name: Student ID:

16

void PrintAllCombination(const char *s)

{

char *p = strdup(s); // copy the string into a new memory location

 if (p == NULL) return;

n = strlen(p);

 if (n == 1) {

 printf("%s\n", s);

 free(p);

 return;

 }

 PrintCombination(p, n, 0);

free(p); // free the newly allocated string memory

}

Name: Student ID:

17

6. (15 points) Extra credit

(a) (5 points) What is the time complexity of mergesort in terms of O notation (problem 2)

if the number of elements to sort is n? Briefly explain the reason for your answer.

 O(n log n). There are (log n) stages of list division, and each stage traverses the

entire list once (n times). So it’s O (n log n) steps required to complete the entire

algorithm.

(b) (10 points) You have (32 * N) light bulbs to monitor. Each light bulb is given an

identifier from 0 to 32 * N -1. Value of 0 represents that the light bulb is off while 1

represents that the light is on. To save memory, you keep the status of light bulbs in a

bitmap, and write two functions, IsLightOn() and SetLight(). IsLightOn(int id) returns

the current value for light bulb identifier, id. SetLight(int id, int value) sets the light

bulb of identifier, id, to value. Fill out these functions

unsigned int bulb[N]; // we have 32 * N bit locations in the array bulb

int IsLightOn(int id)

{

 int n = id / 32;

 int off = id % 32;

return ((bulb[n] >> off) & 0x1);

}

void SetLight(int id, int value)

{

int n = id / 32;

int off = id % 32;

if (value == 1)

bulb[n] |= (0x1 << off);

 else

bulb[n] &= ~(0x1 << off);

}

